PRESS: PeRsonalized Event Scheduling recommender System (Demonstration)

نویسندگان

  • Hoong Chuin Lau
  • Aldy Gunawan
  • Pradeep Varakantham
  • Wenjie Wang
چکیده

This paper presents a personalized event scheduling recommender system, PRESS, for a large conference setting with multiple parallel tracks. PRESS is a mobile application that gathers personalized information from a user and recommends talks/demos to be attend. The input from a user include a list of keyword preferences and (optionally) preferred talks. We use the MALLET topic model package to analyze the set of conference papers and classify them based on automatically identified topics. We propose an algorithm to generate a list of recommended papers based on the user keywords and the MALLET topics. An optimization model is then applied to obtain a feasible schedule. The recommended set is matched against the selected papers by the user which we obtained from a survey conducted at AAMAS15 in Istanbul, Turkey. We show that PRESS is able to provide reasonable accuracy, precision and recall rates. PRESS will be deployed live during AAMAS-16 in Singapore.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Adaptive Educational Hypermedia ‎Recommender Accommodating User’s Learning ‎Style and Web Page Features‎

Personalized recommenders have proved to be of use as a solution to reduce the information overload ‎problem. Especially in Adaptive Hypermedia System, a recommender is the main module that delivers ‎suitable learning objects to learners. Recommenders suffer from the cold-start and the sparsity problems. ‎Furthermore, obtaining learner’s preferences is cumbersome. Most studies have only focused...

متن کامل

Modeling a Smart Hospital Information Architecture Based on Internet of Things and Recommender Agent

Introduction: Today, healthcare organizations worldwide are aware of the significance of technology and its impact on the quality of care. Hospitals are one of the most crucial systems in which the utilization of information is particularly important for several reasons. Using discrete-event simulation and developing a recommender agent, this study aimed to allocate IoT devices to patients in s...

متن کامل

Personalized Diagnosis and Repair of Customer Requirements in Constraint-based Recommendation

Constraint-based recommender applications derive interesting products and services from large and potentially complex item sets. If such applications cannot find a solution, repair actions are proposed that provide support for getting out of the so-called “no solution could be found” dilemma. Such repairs are not personalized and thus often cause a low level of satisfaction and cancellations of...

متن کامل

Modeling a Smart Hospital Information Architecture Based on Internet of Things and Recommender Agent

Introduction: Today, healthcare organizations worldwide are aware of the significance of technology and its impact on the quality of care. Hospitals are one of the most crucial systems in which the utilization of information is particularly important for several reasons. Using discrete-event simulation and developing a recommender agent, this study aimed to allocate IoT devices to patients in s...

متن کامل

A social recommender system based on matrix factorization considering dynamics of user preferences

With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016